5 resultados para SUBUNIT

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute myeloid leukaemia refers to cancer of the blood and bone marrow characterised by the rapid expansion of immature blasts of the myeloid lineage. The aberrant proliferation of these blasts interferes with normal haematopoiesis, resulting in symptoms such as anaemia, poor coagulation and infections. The molecular mechanisms underpinning acute myeloid leukaemia are multi-faceted and complex, with a range of diverse genetic and cytogenetic abnormalities giving rise to the acute myeloid leukaemia phenotype. Amongst the most common causative factors are mutations of the FLT3 gene, which codes for a growth factor receptor tyrosine kinase required by developing haematopoietic cells. Disruptions to this gene can result in constitutively active FLT3, driving the de-regulated proliferation of undifferentiated precursor blasts. FLT3-targeted drugs provide the opportunity to inhibit this oncogenic receptor, but over time can give rise to resistance within the blast population. The identification of targetable components of the FLT3 signalling pathway may allow for combination therapies to be used to impede the emergence of resistance. However, the intracellular signal transduction pathway of FLT3 is relatively obscure. The objective of this study is to further elucidate this pathway, with particular focus on the redox signalling element which is thought to be involved. Signalling via reactive oxygen species is becoming increasingly recognised as a crucial aspect of physiological and pathological processes within the cell. The first part of this study examined the effects of NADPH oxidase-derived reactive oxygen species on the tyrosine phosphorylation levels of acute myeloid leukaemia cell lines. Using two-dimensional phosphotyrosine immunoblotting, a range of proteins were identified as undergoing tyrosine phosphorylation in response to NADPH oxidase activity. Ezrin, a cytoskeletal regulatory protein and substrate of Src kinase, was selected for further study. The next part of this study established that NADPH oxidase is subject to regulation by FLT3. Both wild type and oncogenic FLT3 signalling were shown to affect the expression of a key NADPH oxidase subunit, p22phox, and FLT3 was also demonstrated to drive intracellular reactive oxygen species production. The NADPH oxidase target protein, Ezrin, undergoes phosphorylation on two tyrosine residues downstream of FLT3 signalling, an effect which was shown to be p22phox-dependent and which was attributed to the redox regulation of Src. The cytoskeletal associations of Ezrin and its established role in metastasis prompted the investigation of the effects of FLT3 and NADPH oxidase activity on the migration of acute myeloid leukaemia cell lines. It was found that inhibition of either FLT3 or NADPH oxidase negatively impacted on the motility of acute myeloid leukaemia cells. The final part of this study focused on the relationship between FLT3 signalling and phosphatase activity. It was determined, using phosphatase expression profiling and real-time PCR, that several phosphatases are subject to regulation at the levels of transcription and post-translational modification downstream of oncogenic FLT3 activity. In summary, this study demonstrates that FLT3 signal transduction utilises a NADPH oxidase-dependent redox element, which affects Src kinase, and modulates leukaemic cell migration through Ezrin. Furthermore, the expression and activity of several phosphatases is tightly linked to FLT3 signalling. This work reveals novel components of the FLT3 signalling cascade and indicates a range of potential therapeutic targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GABAB receptor is a functional heterodimer comprising the GABAB1 and GABAB2 subunits, with the GABAB1 subunit displaying two major isoforms, GABAB(1a) and GABAB(1b). Preclinical findings have strongly implicated the GABAB receptor in stress-related psychiatric disorders, however, the precise contribution of the GABAB receptor in depression and anxiety disorders remains unknown. Emerging data suggest that the interaction between adverse environmental conditions, such as early life stress, and a specific genetic composition can increase the risk to develop psychiatric disorders in adulthood. This thesis investigated the role of the GABAB receptor alone or in combination with early-life stress (maternal separation), in modulating antidepressant like and anxiety-related behaviours. Pharmacological blockade of the GABAB receptor with CGP52432 had antidepressant-like behavioural effects. Moreover, mice lacking the GABAB(1b) receptor subunit isoform exhibited antidepressant-like behaviours in adulthood but anxiety-like behaviour in early-life. In response to maternal separation, GABAB(1a)-/- mice exhibited early-life stress-induced anhedonia, a core symptom of depression, while GABAB(1b)-/- mice exhibited a more resilient phenotype. Moreover, when compared with wildtype or GABAB(1a)-/- mice, GABAB(1b)-/- mice that underwent maternal separation exhibited enhanced stressinduced neuronal activation in the hippocampus and in the nucleus accumbens (NAcc), a critical area for anhedonia thus suggesting that enhanced stress-induced neuronal activation in the hippocampus and NAcc in GABAB(1b)-/- mice may be important for their antidepressant-like phenotype and their resilience to stress-induced anhedonia. Pharmacological blockade of GABAB receptor and GABAB(1b) receptor subunit isoform loss of function increased adult hippocampal cell proliferation, thus suggesting that increased hippocampal neurogenesis could be a potential mechanism for the antidepressant-like effects of GABAB receptor antagonists and GABAB(1b) receptor subunit isoform disruption. Finally, this thesis investigated whether the expression of several genes involved in hippocampal neurogenesis or the antidepressant response were altered in the mouse hippocampus following chronic treatment with a GABAB receptor antagonist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GABAB receptor has been postulated as a possible drug target in the treatment of anxiety disorders and cocaine addiction. Indeed, a wealth of preclinical data is emerging that has shown that mice lacking functional GABAB receptors display a highly anxious behaviour across a range of behavioural models of anxiety. Additionally, novel compounds that act by altering the allosteric conformation of the GABAB receptor to a more active state; the GABAB receptor positive modulators, have been repeatedly demonstrated to have anxiolytic effects in animals. In addition to being a putative anxiolytic drug target, the GABAB receptor has been identified as a novel target for antiaddictive therapies. Indeed GABAB receptor positive modulators have been demonstrated to have anti-addictive properties across a broad variety of behavioural paradigms. Despite these findings, several gaps in our knowledge of the role played by the GABAB receptor in both anxiety and drug abuse disorder exist. The aim of this thesis was to use preclinical animal models in an effort to further probe the role played by the GABAB receptor in anxiety and addiction. Our studies initially examined the role played by the GABAB receptor in the neurodevelopmental processes underpinning of anxiety. Our studies demonstrated that treating mouse pups in early life with the GABAB receptor agonist baclofen produced an anxious phenotype in adult life, whereas treatment with the GABAB receptor antagonist CGP52432 produced no effects on adult behaviour. Further to this, we examined whether the anxious behaviour induced by early life blockade of the serotonin reuptake transporter was dependant on alterations in GABAB receptor function. Our studies however revealed no effect of early life selective serotonin reuptake inhibitor treatment on adult life baclofen sensitivity. The next issue addressed in this thesis is the characterization of the effects of a GABAB receptor positive modulator and a GABAB receptor antagonist in a behavioural model of conditioned fear behaviour. These novel classes of GABAB receptor ligands have been considerably less well characterized in this facet of preclinical anxiety behaviour than in terms of innate anxiety behaviour. Our study however revealed that the GABAB receptor positive modulator GS39783 and the GABAB receptor antagonist CGP52432 were without effect on the acquisition, expression or extinction of conditioned fear in our model. The next element of this thesis dealt with the characterization of a novel mouse model, the GABAB(2)- S892A mouse. This mouse has been engineered to express a form of the GABAB(2) receptor subunit wherein the function determining serine phosphorylation site cannot be phosphorylated. We initially tested this mouse in terms of its GABAB receptor function in adult life, followed by testing it in a battery of tests of unconditioned and learned anxiety behaviour. We also examined the behavioural and molecular responses of the GABAB(2)-S892A mouse to cocaine. All of our studies appear to show that the GABAB(2)-S892A mouse is indistinguishable from wildtype controls. The final aim of the thesis was to investigate the behavioural and molecular sensitivity of the GABAB(1) subunit isoform null mice, the GABAB(1a) -/- and GABAB(1b) -/- mice to cocaine. Our studies revealed that these mice display differing behavioural responses to cocaine, with the GABAB(1a) -/- mouse displaying a hypersensitivity to the acute locomotor effects of cocaine, while the GABAB(1b) -/- displayed blunted locomotor sensitisation to cocaine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the recognition of potentially harmful stimuli, Toll-like receptors (TLRs) initiate the innate immune response and induce the expression of hundreds of immune and pro-inflammatory genes. TLRs are critical in mounting a defence against invading pathogens however, strict control of TLR signalling is vital to prevent host damage from excessive or prolonged immune activation. In this thesis the role of the IκB protein Bcl (B-cell lymphoma)-3 in the regulation of TLR signalling is investigated. Bcl3-/- mice and cells are hyper responsive to TLR stimulation and are defective in LPS tolerance. Bcl-3 interacts with and blocks the ubiquitination of homodimers of the NF-κB subunit, p50. Through stabilisation of inhibitory p50 homodimers, Bcl-3 negatively regulates NF-κB dependent inflammatory gene transcription following TLR activation. Firstly, we investigated the nature of the interaction between Bcl-3 and p50 and using peptide array technology. Key amino acids required for the formation of the p50:Bcl-3 immunosuppressor complex were identified. Furthermore, we demonstrate for the first time that interaction between Bcl-3 and p50 is necessary and sufficient for the anti-inflammatory properties of Bcl-3. Using the data generated from peptide array analysis we then generated cell permeable peptides designed to mimic Bcl-3 function and stabilise p50 homodimers. These Bcl-3 derived peptides are potent inhibitors of NF-κB dependent transcription activity in vitro and provide a solid basis for the development of novel gene-specific approaches in the treatment of inflammatory diseases. Secondly, we demonstrate that Bcl-3 mediated regulation of TLR signalling is not limited to NF-κB and identify the MAK3K Tumour Progression Locus (Tpl)-2 as a new binding partner of Bcl-3. Our data establishes role for Bcl-3 as a negative regulator of the MAPK-ERK pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal tandem duplication of FMS-like receptor tyrosine kinase (FLT3-ITD) has been associated with an aggressive AML phenotype. FLT3-ITD expressing cell lines have been shown to generate increased levels of reactive oxygen species (ROS) and DNA double strand breaks (dsbs). However, the molecular basis of how FLT3-ITD-driven ROS leads to the aggressive form of AML is not clearly understood. Herein, we observe that the majority of H2O2 in FLT3-ITD-expressing MV4-11 cells colocalises to the endoplasmic reticulum (ER). Furthermore, ER localisation of ROS in MV4-11 cells corresponds to the localisation of p22phox, a small membrane-bound subunit of NOX complex. Furthermore, we show that 32D cells, a myeloblast-like cell line transfected with FLT3-ITD, possess higher steady protein levels of p22phox than their wild type FLT3 (FLT3-WT)-expressing counterparts. Moreover, the inhibition of FLT3-ITD, using various FLT3 tyrosine kinase inhibitors, uniformly results in a posttranslational downregulation of p22phox. We also show that depletion of NOX2 and NOX4 and p22phox, but not NOX1 proteins causes a reduction in endogenous H2O2 levels. We show that genomic instability induced by FLT3-ITD leads to an increase in nuclear levels of H2O2. The presence of H2O2 in the nucleus is largely reduced by inhibition of FLT3-ITD or NOX. Furthermore, similar results are also observed following siRNA knockdowns of p22phox or NOX4. We demonstrate that 32D cells transfected with FLT3-ITD have a higher level of DNA damage than 32D cells transfected with FLT3-WT. Additionally, inhibition of FLT3-ITD, p22phox and NOX knockdowns decrease the number of DNA dsbs. In summary, this study presents a novel mechanism of genomic instability generation in FLT3-ITD-expressing AML cells, whereby FLT3-ITD activates NOX complexes by stabilising p22phox. This in turn leads to elevated generation of ROS and DNA damage in these cells.